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CYLINDRICAL LINING OF ARBITRARY THICKNESS 

IN AN ELASTIC MEDIUM 

ABSTRACT 

Dynamic stresses in a thick-wall elastic cylinder in an infinite elastic medium 
during passage of plane, compressional waves are investigated.   Dynamic 
stresses around the cylinder in the elastic medium are also determined. Nu- 
merical results for two different cylinders with ratios of outer radius to inner 
radius ranging from 1. 05 to 1. 20 are presented in a dimensionless form. It 
is shown that increasing thickness does not, in general, reduce stresses in 
the cylinder; in addition, dynamic stresses at certain wave numbers are 
higher than the corresponding static value. 
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SECTION I 

INTRODUCTION 

The problem of dynamic stresses in an infinite medium containing 

cavities, rigid inclusions, and elastic inclusions has been studied exten- 
[12   3   4] 

sively the problem of scattering or diffraction of sound or stress 

waves by thin elastic shells in fluid and elastic media has also been the 

subject of many investigations. 

The problem presented herein is the response of a thick-wall cylinder 

in an infinite elastic medium subjected to a progressing compressional wave. 

It is assumed that the thick-wall cylinder is of infinite extent and is embedded 

in and bound to an  infinite elastic medium.   A plane compressional wave of 

harmonic time variation propagates in the positive X-direction (Fig. 1) and 

impinges on the embedded cylinder. 

It is known that if the material constants (A, ^, and p) of the cylinder 

and the elastic medium are different, scattering will occur at the interface 

of the cylinder and the surrounding medium.   If, however, the material con- 

stants are the same, the problem should reduce to the simple cavity case 

presented in reference 1. 

In general, at the boundary of the cylinder and the surrounding medium, 

the incident compressional waves are reflected and refracted as compressional 

and shear waves.   Hence, there will be two refracted waves propagating into 

the cylinder.   These waves will be reflected at the traction-free boundary of 

the inner surface of the cylinder.   Therefore, seven waves exist; one incident 



wave, two reflected waves in the elastic medium, and four in the cylinder due 

to refraction and reflection. 

The solution of this problem involves finding the coefficients associated 

with the six unknown waves.   This is accomplished by four equations of 

continuity at the interface and two boundary conditions at the traction-free 

inner surface of the cylinder. 

I I I 1 I I J 

^ Fig.  1   Cylindrical Lining 



SECTION II 

GENERAL THEORY 

If it is assumed that the cylinder is infinite in extent, the problem 

becomes one of generalized plane strain.   The displacement equation of motion 

is 

(A + ^)VV  •   u + juV2u =   pu (1) 

where 

u is the displacement vector 

V is the gradient operator 

A and ju are the Lame Constants 

p is the density. 

The displacement vector  u  can be represented by a scalar potential 

and a vector potential; in the case of plane strain this is 

u  = V 0 +  Vx(e   ip) (2) 
Z 

Each potential function then satisfies a scalar wave equation 

c^V20=   0 (3) 

c2
ß V

2 if, =   y (4) 



In Equations (2), (3), and (4), e     is a unit vector along the axis of the 
z 

cylinder and 

2 A + 2jU 2        jx 
c     — c 0 

a p P       P 

As shown in Fig. 1, in plane polar coordinates (r, 0) the scalar form of 

Equation (2) is 

90       l djj 
r or r  30 

i _a_0       dj_ 
U0  '    r    de d r 

and the stresses are related to the potentials by 

rr r \ Q   2        r   8r30 2     9öi \ 3r r ' 

00 \    2        2        r    8 r       r   3r3ö        290 
\ r     d 9 r 

(5) 

r0 r I r    9r80 2    30    + r     dr  +    2    _2      2   V    * j    (6) 

\ r r     3 0 / 



SECTION in 

INCIDENT REFLECTED AND REFRACTED WAVES 

For convenience, the surrounding elastic medium and the thick-wall 

cylinder will be denoted as regions Nos. 1 and 2, respectively. 

The incident wave, propagating in the positive X-direction is represented 

by 

*M   =   0 <7> 
Mi) 

where 

<t>    is a measure of the amplitude 

oj the circular frequency 

a   - cü /        is the wave number of the compressional wave. 
1 c 

In polar coordinates 

<^l   "   ^   7     €   inJ(ar)cosnÖe   1Cüt (8) 
(1) 0   Li      n        nv   1 

n = 0 



where 

J      denotes the Bessel function of the first kind of order n 
n 

e      is a constant so that 
n 

1       n= 0 

n 

2       n ^ 1 

Let the origin of the polar coordinates coincide with the central axis of the 

cylinder.   The waves in regions Nos. 1 and 2 can then be expressed as follows. 

REGION NO. 1 

o <
R)  = 
(1) 

(1) -icJt 
A   H      ( a r) cos nö e 

n     n        l 
n=0 

(9) 

(1) 

(1) -icJt 
B  IT  } (ß.rjsinnöe 

n    n    v   1 ' 
n=0 

(10) 



REGION NO. 2 

SB 

<p[ll  =   /     M  H(2) (arjcosnöe ~lCüt (11) 
(2)      Li      n  n       2 ' (2) 

n = 0 

*S   =   £     NnH^(^2r)sinnöe-
iCÜt (12) 

n=0 

w^ 

♦g" I Vfi» IV»—••** (2) 
n=0 

(13) 

*S> =   I    SnHn)(^2r) Sinne e"iWt (14) 

n = 0 

In Equations (9) through (14) 

0j     ip J ' represents the compressional and shear waves in region No. 1 

0      ^ /o\   rePresents the inward propagating compressional and shear 
(*)    (2) 

waves in region No. 2 

W9\ ^ /9\   are ^e out£om£ waves in region No. 2 

A  , B , M , N  , R , and S    are expansion coefficients to be determined 
n     n      n     n      n n 

a   and OL   are the compressional wave numbers in regions Nos. 1 and 2 
i u 



ß   and ß    are the shear wave numbers in regionsNos. land2   (ß   =   etc.) 

1   \ 

H      and H       denote the Hankel functions of the first and second kind of 
n n 

order n .    The Hankel function of the first kind is used for diverging waves; 

e.g. , in Equations (9), (10), (13), and (14).    The Hankel function of the 

second kind represents converging waves; e.g. , in Equations (11) and (12). 

In Equations (9) through (14) there are six undetermined coefficients.   The 

boundary conditions which allow these coefficients to be determined are listed 

below. 

At r  =  b the condition of continuity requires that 

T =  T 
rr rr 

(2) (1) 

rd rtf 
(2) (1) 

u        = u 
r r 

(2) (1) 

(2)       (i) 

At r = a the traction-free boundary implies 

T =0 
rr 

(2) 

Tr0 
(2) 

(15) 

= 0 do) 



SECTION IV 

SOLUTIONS 

viiere T T U U are the stresses and dis- 
rr(l),(2)    r (1),(2)    r(l),(2)      (1),(2) 

placements due to the total displacement potential in regions Nos.  1 and 2; e. g., 

T = T ((p       ih      \ 
rr(l)       rr(l)^   (1)     (1)' 

T =  T (<p lb        \ 
rr(2)       rr(2)^   <2>     <2" <17> 

where 

y(l)     y(l)     v(l) 

0 =   0«    +    0(R) 
v(2)      r(2)      ^(2) 

ift       = tf (i) + tf (R) (18) 
* (2)     ^ (2)     ^ (2) 

Substituting Equations (9) through (14) and (18) into Equations (5) and 

(6) yields the corresponding displacement and stress components in regions 

-ic^t 
Nos.  1 and 2.   With the time factor e omitted, the expressions for the 

displacement are 



u       = r 
r(D 

1    )       4>   e ina,rJ'(a r) +A a rH(1)   (a r) + B  nH(    (ß r)    cosn0 
Li        OB     -1    a   1 nln        1 nnl 
n = 0 

(19) 

ue     =-r 

(1) 

oo 

1    /       $,S   innJ (ar) + A  nH(1)(ar) + B  /3rH(1)   (Ar)    sin nö 
Z^ On        n    1 nnl nln        1 
n=0 

(20) 

00 

ur      ^r'1   £      MnVH(f (V> + Nn^n2)(V> + RnVHi1>,(V) 
(2) n=0 

u        = -r 
(2) 

-1 

+ S  nH(1) (ßnr)       cos nö 
n     n      2 

, M  nH(2)(ar) + N   /3 rH(2)   (ßnr) + R  nH(1) (CK r) 
n     n       2 '       n2     n        2 n     n       2 ' 

(21) 

n=0 

+ Vrf'^j sin nö (22) 

The expressions for the stress are 

rr 
(1) 

OO 

= 2ur"2    Y     (0  ,   inD(i)+A     n(R)+B   ,S>(R)) cos nd 
1 ZJ On     1  nr      • n 1  nr       n 1   nr ' 

n=0 
(23) 

00 
(1) 

OO 

=   2M,r"2   y    (</>  e   in   F(i)+A   , F(R) - B     $<R>)cosnö (24) 
^1 Zy    l   0 n    lnr       nl  nr        nl   nr 

n=0 

10 



rO 
(1) 

CO 

=    2u  r~2   y    (4>   6   inK(i)+A    E(R) + B     £(R))sinn0 (25) 
1 Li 0 n    1   nr       nl  nr        nl   nr 

n = 0 

rr 
(2) 

2M2r 
-2 

(M  0D
(i)+N   0S)(l) +R   0D(R) + S     $(R))cosn0   (26) 

n2   nr       n 2   nr        n 2   nr        n2   nr v    ' 
n = 0 

7 99       =2M2r 

"(2) 
"2Y    (M      F(i)-N   o3)(i)+R      F(R)-S      $(R))cosn0     (27) 

ZJ        n2   nr       n 2   nr       n 2   nr        n 2   nr ' v    ' 
n=0 

rO 
(2) 

2M2r 
-2 

(M     E(l) +N      ß(l)+R   0E
(R) + S     &(R))sinn<9     (28) 

n 2   nr        n 2   nr        n 2   nr        n 2   nr 
n=0 

with 

(n2+n-i ß2 r2)J (a r) - a rj     Jar) W(1) 
1   nr 2 "1     '   nv   1 '        1     n-r   1 

(i) 2 
Ew   =   (n   + n) J (a r) - no, rj     ..(ar) 

1   nr       v '   nv   1 ' 1     n-lv   1 ' 

lFnr  ="(n2 +n ' ai *   +2 ^1 r2)Jn^ir) + V Jn - l(°lr) (29) 

11 



.D(R)   -   (n2 + n - 77/3 .2 r2) H(1)(a.r) - a.rH(1'(ö.r) 
J   nr 2    ]       '    n   v   j '       j     n-lv   j ' 

,E(R)   ■   (n2 + n)H(1)(0!.r) - na.r H*1*   (a.r) 
j   nr n       j j      n-1    j 

J   nr 
2 2   2     1     2   2     (1) (1) 

- (n   +n-a.r   + - ß . r ) Hv ' (a.r) + a.rHv '   (a.r)    (30) 

j    -    1, 2 

2Dir  =   ^+»-i'5*a)Hf)<°t,[)-V"£l<02« 

2   nr 
(n2 + n) H^2) (a2r) - n^rH^ 1 (o^r) 

F(i) 

2   nr 
2 2   2      12  2      12\ (2\ 

= -(n   +n-0!2r   + - ß ^ ) H^ } (a^) + a^r H^^r) (31) 

.3)(R)   = -(n2 + n) H(1) (j3 .r) + nß .r H(1), (ß .r) 

s 
J   nr 

(R) _ ■ -(n2 + n - \ ß 2 r2) H^ (ß}r) + /3.r H^ ^l) (32) 

j    =   1» 2 

12 



23>J2=  V^Hf^ + n^rH^.r) 

^S   -   V + n-i/.22r
2,H>2D+VHf) x ^r, (33) 

and 

dH 
H' (x)   =  -r5- 

n dx 

dJ 
J' (x)   =  -^ (34) 

n dx 

Equations (19) through (28) are the general expression for the stresses 

and displacements in regions Nos.  land2.    To evaluate the coefficient A , etc. , 
n 

use the conditions of continuity at r = b and the boundary conditions at r = a . 

At r = b 

T =     T 
rr rr 

(2) (1) 

nb 
M 0D(ii + N  „fl^ + R  0D(R?+S  ,3)W - ,(A  .D^ + B    ®(R>) = •» *e i"D 

n2   nb       n2   nb       n2   nb       n2  nb nl  nb        nl    nb' 0 n    1   ; 

(35) 

Tr6(2)=    Tre(l) 

M    K(i> + N  „«« + R  9E<»> + S   # - ,(A   ,£<*> + B    «<*>) = ^ «„ei> 
n2nb       n2nb        n2nb        n2nb        ^  nl  nb        nl   nb' Onl 

,n ^(i) 
nb 

(36) 

13 



u       = u 
r r 

(2) (1) 

Mnö2bHn ),(a2b) + V "n ' iß2b) + W"?1'1^ + h*^ ^2b) 

- [ Vrf' <V> + BnnHn > (^lb) ] =   Vr/ aibJn(V> <37> 

u       = u 0 0 
(2)        (1) 

^n<2)^2b) + V2bHn)'^2b> +RnnHn)(a2b> + V2
bHn),(/32b) 

"   [VHf)(ail*+VlbH?),tfl1»]-     Vn^W* (38) 
At r = a 

T =  0 
rr 

(2) 

M<2)   D(i)
+N     ®(i)   +  R     D(R)   +S      2)(R)    =  0 (39) 

n   2   na       n 2   na n 2   na n 2   na 

T =     0 

(2) 

M      E(i)    +   N      SW    +   R      E(R)   + S      fi(R)   =   0 (40) 
n 2   na n 2   na n 2   na n 2   na 

where v-   M /^    is the ratio of the shear moduli of regions Nos. land2. 
-L       Z 

Thus, the coefficients A , B , M , N , R , and S    are determined by the 
n     n      n     n     n n 

six simultaneous Equations (35) through (40). 

14 



Using matrix notation, Equations (35) through (40) can be conveniently 

expressed as follows 

MW-M (41) 

where 

N' 

,D(R) ^2)(R) D(i) 3)(i> D(R) $<R> 
1  nb 1  nb 2  nb 2-%b 2  nb 2  nb 

v F(R) ^g(R) E(I) f(1) F(R) p(R) 
1   nb 1   nb 2   nb 2   nb 2   nb 2   nb 

aibHn><Qib)     nHn)(/3lb)        a2bHn)(a2b) nHn)(^2b) V1^^ nHn)(ß2b) 

nH^^b) /^bH^ü^b)   nH^^b) /^bHJ^b) nH^^b) ^MljJ^b) 

0 D^ •« n<R> 93)<R) 
2   na 2   na 2   na 2   na 

0 0 E(i) J!« E<R) S<R> 
2   na 2   na 2   na 2   na 

(42) 

15 



■ 

/ "A    \ 
n   V 

N- 

i -B 
n   1 

1 M     f 

\  N      / 
1     n    I 
f  R       1 n    1 

(43) 

and 
• 

1   s 
\     n    / 

b.    =  4> e i 
if       On 

.n 

v D(1) 

1  nb 

'A 
1     n   1 ' 

nJ (ah) 
n   1 ' 

(44) 

Hence 

. W ■ 'S ft) 
where   [A..] is the adjoint of   [a..] and   |a| is the determinant of    }a..|. 

16 



REDUCTION TO THE SIMPLE CAVITY CASE 

Consider the case when the material constants of the two regions are the 

same: 

VVA 

Therefore 

It follows that 

"i= h= M 

Pl = p2 = p 

a   = a   -a 
1  2 

ßx-ßt-ß 

v = 1 

D(R) .  D(R) 
1 nr     2 nr 

2)(R) =   3)(R) 
1 nr     2 nr 

(R) =   (R) 
1 nr     2 nr 

S<R> =   g(R> (46) 
1 nr     2 nr 

17 



Furthermore, using the relationship between  H       and   H   ' 
n n 

H(1)(x)   +  H(2)(x)   =  2J (x) 
n n n   ' 

(47) 

it can be shown that 

2   nr 2   nr 1   nr (48) 

E(D     +        E(R)     = 2   E(i) 
2   nr 2   nr 1   nr (49) 

Substituting Equations (46), (48), and (49) into Equation (45), the 

undetermined coefficients for the two potentials in region No. 1 are 

A    = - 4> e   i n On 
.n 

1   na 

1   na 

(R) 
1  na 

E(R) 
1   na 

3)(R) 
1  na 

g(R) 
1  na 

1  na 

g(R) 
1  na 

(50) 

18 



and 

B    = - tie in 

n On 

1   na 

(R) 
1   na 

n<R> 
1   na 

,E<R> 
1   na 

n<l> 
1   na 

1   na 

3)(R) 
1   na 

1§
(R> 

1   na 

(51) 

These expressions for A    and B    are the same as those in reference 1.   The 
n n 

remaining coefficients M , N  , R , and S   are 
n      n      n n 

1   A,      -n 
M    =   Ö   $„€   i n        2     0 n 

N     =   0 
n 

S =   B 
n n 

^ 1   a.      .n R =   -   0ne   l    +  A 
n 2     0 n n 

(52) 

Thus the shear potential in region No. 2 is obviously the same as that in 

region No.  1.  The total scalar potential in region No. 2 is 

19 



<t>. 
(2) (2)       V(2) 

00 

=    /       Ö   4k€   ^  H      (ar)cos nö LJ      2      0   n n ' 
n=0 

.n (1) (-   0oeni   +An) H^;(ar) cos nö 

n = 0 

& c   i11 J (ar)   +  A   H(1) (ar) 
On       rv     ' n    n ' cos n# (53) 

which is identical to the scalar potential in region No. 1.   Therefore, the 

problem is reduced to a simple cavity case. 

20 



SECTION V 

NUMERICAL RESULTS AND DISCUSSIONS 

Numerical results are obtained for r and T_-      at r = b and r. _ rr 66 66 
(1) (1) (2) 

at r = a.   This is accomplished by summing the series in Equations (23), (24), 

and (27), respectively. 

For reasons of expediency, the expressions for the stresses are non- 

dimensionalized.   The important nondimensional parameters can then be 

properly identified, and the effects of these parameters on the stresses in the 

cylinder as well as in the surrounding medium can be evaluated. 

To nondimensionalize these expressions, recall the expression for the 

incident wave given in Equation (7) as 

V(l)       voe 

Therefore, the stress in the incident wave in the direction of propagation is 

i(a x - cot) 
7xx=   -<V2*l)aiV <54> 

2 
It follows that -(A   + 2^i ) a   <f>    is the stress amplitude of the incident wave. 

Denote it as 

TO --«v^Xv-'ivo (55) 
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Thus, Equations (23), (24), and (27) can be nondimensionalized by dividing 

through by   r     as shown below: 

* 

+ B   n3)(R))cosn(9 (56) 
n 1   nr ' v    ' 

Tee 
T* 

T oo 

rr. 
Ü1-   = 2—      Y     i*   .   ."   n<»>   ,    4      n<R> 

rr r 2 2    £        0 n    1  nr nl   nr 
v ; r0p 1 n = 0 

V) 0 4>/3V     ^        0  n     1  nr n 1   nr 
Ü   1 n-0 

-Bnl^,oo.n« (57) 

(2) o <t>   vß   r       ^      n2   nr       n2   nr 
0      1 n=0 

+ Rn2Fnr)-S„23,ir))COSne M 

where V = /1
/^2 is the ratio of shear moduli of regions Nos. 1 and 2. 
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By letting r = b in Equations (56) and (57), and r = a in Equation (58) 

we have, for example, 

7 * 
7    (f^  I^K + A  I°

(
K

)+B
  ,l(?)cosn«        (59) LJ    

N
   0  n     1   nb       n 1   nb       n 1   nb 

"« V?b2    n=0 
r = b 

with similar expressions for Equations (57) and (58). 

By examining the arguments in    D     ... etc., that are associated with 

various terms in Equation (59) etc. , it is found that five essential nondimensional 

parameters exist.   These are 

c ratio of the dilatational phase 

7 =   —~  velocities of regions Nos. 1 
1     a2 and 2 

/ß   \2      /ca   \2      2(1-CT ) 
2     f    1 \       /     _1\ ratio of dilatational phase 

1 
1/        \ °ß   I 1 velocities to distortional phase 

velocities in regions Nos.  1 

2   /M2   (\\2  ^"V     •ada 

=    b/a ratio of outer radius to inner 

radius of the cylinder 
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-[ 2 ^        1.22.       v2 
n       n ~2     l ^   (0?ia) «y^a) - m1^n_1(v^) (63) 

24 

By substituting these expressions into Equation (59) ... etc., the final 

expressions for T *        r *       at r = b and T *       at r = a are obtained 
rr 00 00 

(1)        (1) (2) 

T* 
rr 

(1) 
r = b 

Vl^'V»     n=0 
(*n*   iniD(iK + A   .D^ + B     S^) cos nö On     1   nb       n 1   nb        n 1   nb ' 

(60) 

T* 

r = b 

2    2 2 
Vi * <aia) 

7    <V   in,F(i!+A    T^-B   /*>) cos nö 
Li        0  n     1   nb       n 1  nb       n 1   nb 

00 
(2) 

r = a 
vk?<v)2 (M      F(i)   -N   J>(1) + R   0F

(R) 

n 2  na        n 2  na        n 2   na 

(61) 

-S   J)(R)) cosn( 
n 2   na 

(62) 

The expressions for    D ^ • • •    2)*    can be expressed in terms of the 

incident dimensionless wave number (a a) and the parameters defined above. 

For example 

lDnb=  (n2 + n-J^ba)Jn(alh»-°lbJn-l<alb> 



It is apparent that the stresses in the cylinder as well as in the surrounding 

elastic medium are not only a function of the incident wave frequency, but also 

depend on the four physical parameters of the two media and a geometrical 

parameter of the cylinder. 

By restoring e ~ia;t, Equations (60) through (62) have the form 

-iwt 2      2   1/2     -Uujt - Ö) 
(R + il)e -   (R   +1 ) e     K ' (64) 

The real part represents the stresses at t = 0 and the imaginary part 

gives the stresses at t = T/4, where T = 2TT/<JO is the period of the incident 
2       2   l/2 

wave.   The absolute values (R   +1   ) correspond to the maximum values 

of     T*        ,  T*        and T* which occur in the interval t = 0 to t = T/4 . 
rr 66 66 

(1) (1) (2) 

The phase angles are given by   6= arctan i/R . 

Numerical results are obtained for two cases corresponding to a soft 

and a stiff cylindrical lining. 

SOFT CYLINDRICAL LINING 

In this case the dimensionless physical parameters are assumed to be 

v   =   2.90 

y -   1.50 

o-     =      .25 

a2   .      .20 

r]   =   1.05, 1.1 and 1.20 

The results are shown in Figs. 2 through 6. 
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0:0 

Fig. 2   Distribution of Normalized Tangential Stress at 
r= a and T) = 1.1    (Case i) 

Fig. 2 shows the angular distribution of   \ r* 
00 

for 77=1.1 at r = a 
(2) 

for two wave numbers:   a a = .20 and a a = 1. 0.   At the low wave number, 

the distribution is nearly symmetrical with respect to the y axis; at a a = 1. 0, 

the peak stress is shifted toward the incident side of the cylinder.   This is also 

found in reference 2. 

Fig. 3 shows the stresses as a function of a a and 77 at t = 0 and t = T/4. 

For this case, an increase in 77 does not change the stress appreciably; in 

fact, as 77 increases, the stress also increases. 

Fig. 4 shows the stresses at 0= 71-/2,   IT and r = a for . 10 ^ a  a ^2. 0. 

The maximum stresses at TT/2 occur at a a « .25; this agrees with the results 

of reference 1. 
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2.0 

T99{2)    i.o 

1 "V 
10 

a,a 
2.0 

Fig. 3   Normalized Real and Imaginary Tangential Stresses at 

r = a,    0=—-    for Various TJ (Case I) 

Figs. 5 and 6 show the effects of r\ on the stresses in medium (1) at r = b. 

It is seen that   |T* | at TT/2 decreases as 77 increases, with the peak value 
Qd 

(1) 
again occurring at a a « . 25.   On the other hand,    | r* in all cases in- 

(1) 
creases as 77 increases. This is apparent since the rigidity of the cylinder 

is increased as 77 increases; hence, higher radial stresses are produced at 

the boundary. 
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69 
(2) 

2.0 

Fig. 4   Normalized Tangential Stress at r = a,    0 -  ,7T 

for Various 77 (Case I) 

STIFF CYLINDRICAL LINING 

The dimensionless parameters are assumed to be 

v   =   .31 

y  =   .70 

<r     =    .25 

7]   - 1.05, 1.1 and 1.2 

The results for this case (Case II) are shown in Figs. 7 through 11. 
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4.0 

T89 (i) 

2.0 

Fig. 5   Normalized Tangential Stress at r = b, 6 = -r-,71" for Various 77   (Case I) 

0.40 

|T,r„,|        0.20 

/r\ =   1.2 , 0 = v 

K-^ö=^l                                     /            I?«   I.I 
^ 1 /     /  ^ = 1.05 

-^^^^><c^^—  -*^ , /    /     ,- 
 1 - 

1.0 
a,a 

2.0 

Fig. 6   Normalized Radial Stress at r = b, 6 = ~^-/7r   for Various 77   (Case I) 
Li 
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Fig. 7 shows the angular distribution of  | r* 
0(J 

for  T] = 1.1 at r = a 
(2) 

for two wave numbers;   a a = .20 and a a = 1.0.   Note that the shifting 

exhibited in the case of the soft cylindrical lining (Case I) also occurs in this 

case.   The magnitude of the stresses are, however, much higher. 

Fig. 9 shows the effects of 77 on stresses in the cylinder.   In this case, 

the stress decreases as 77 increases;   this is in contrast to the previous soft 

cylinder case. 

0 = 0 

Fig. 7   Distribution of Normalized Tangential Stress at 
r = a and TT, =  1.1   (Case  II) 
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10.0 

99. 
(2) 

2.0 

Fig. 8   Normalized Real and Imaginary Tangential Stresses at r= a, 

for Various r\   (Case II) 
2     ' 

Figs. 10 and 11 show the effects of 77 on the stress in region No.  1.  The 

general trend is the same as in (Case I). 

The contrast in the results for the stiff lining and the soft lining should 

be emphasized.   Both cases exhibit the tendency for stress to concentrate at 

large wave numbers on the incident side of the cylinder; however, the tangential 

stress in the lining is significantly higher in the case of the stiff liner.   The 

wave numbers for maximum stress at  6 = ir/2 and TT are approximately the 

same for both the stiff and the soft lining, but the effects of increased lining 

thickness on tangential stress are opposite in the two cases.   The stress 

decreases with thickness for the stiff liner, but increases with thickness in the 

case of the soft liner. 
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10.0 

2.0 
a,o 

Fig. 9   Maximum Normalized Tangential Stress at    r = a, 

for Various  77  (Case II) 

IT 

T ' TT 

3.0 

2.0 

r00, 
(I) 

2.0 

Fig.  10    Normalized Tangential Stress in Medium (1) at 

r = b,0= — fit for Various y\ (Case II) 
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Other points of contrast are: 

(a) The variance of tangential stress in the cylinder with thickness 

is less in the case of the soft liner. 

(b) The tangential stress in the infinite medium at the boundary of the 

lining is less in the case of the stiff lining.   In addition, increasing 

thickness markedly reduces this stress, significantly more so than 

for the soft lining. 

(c) The radial stresses in the infinite medium at the boundary of the 

lining are much less in the case of the soft lining.   In both cases, 

this stress reduces rapidly with decreasing thickness. 

2.0 

r(l)| 
1.0 

 77 = 1.05 

^^^^      V = 1.05  \ 

^— ' 

*" "                        ^^ 
■  

1.0 

a, a 

2.0 

Fig.  11    Normalized Radial Stress in Medium (1) at 

r=b,0= ,7r for Various r\ (Case  II) 
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APPENDIX 

THE EXACT TWO-DIMENSIONAL SOLUTION FOR AN 
ELASTIC CYLINDRICAL LINING IN AN INFINITE ELASTIC 

MEDIUM UNDER BIAXIAL COMPRESSIVE LOADING 

This appendix derives expressions for the stresses in an elastic cylin- 

drical lining in an infinite elastic medium under biaxial compressive forces. 

This static solution represents the infinite wave length (zero frequency) solution 

to which the traveling wave solution must converge in the limit.   This is 

accomplished by using a superposition approach in which the compatibility 

equations for the stress and displacement at the interface between the lining 

and the infinite medium are expressed in terms of unknown radial and tangential 

tractions assumed to act on the lining and the boundary of the infinite medium. 

The solution derived is a plane strain solution. 

STATIC STRESS AND DISPLACEMENT OF AN UNLINED CYLINDRICAL 
CAVITY BOUNDARY DUE TO THE BIAXIAL COMPRESSIVE FIELD 
T       =   -   T    ,    T       -  £ T 
xx 0     yy 0 

Consider an infinite elastic medium with a cylindrical cavity of radius 

"b" under biaxial compression   r     » -TÄ. T     = e T    where   e = - o\ /l -cr 
xx 0      yy 0 11 

(Fig. 12).   The subscript 1 is used to identify the infinite medium as opposed 

to the lining considered below.   The displacements at the cavity boundary due 
[7] 

to the biaxial compressive field      are 

(i) i 
r = b 
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Fig.  12    Unlined Cavity 

'-er: 

Mill 

i-a, 

u 
2Tob 

0, 
(1) 

r = b 

1    L 
(1 - 2a )(1 + a ) sin 2 0 (66) 

Reference 8 gives the tangential stress at the boundary of the cavity due 

to the biaxial compressive field; i. e., 

0 
9Ö

(1)   
l"xL 

r = b 

-1 + (2 - 4a ) cos 21 (67) 

The radial and shear stresses vanish at the boundary. 
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STATIC STRESS AND DISPLACEMENT OF AN UNLINED CAVITY BOUNDARY 
DUE TO APPLIED BOUNDARY TRACTIONS   f AND J „ 

rr rd 
(1) (1) 

Consider an infinite elastic medium with a cylindrical cavity of radius 

b"   under action of applied radial and tangential boundary tractions   T        and 
rr(l) 

rd 
, respectively.   Let 

(1) 

rr 
(1) 

T +    T COS 2 0 
rr0 rrj 

rfl 
(1) 

T „    sin 2 0 
r9l 

(68) 

Fig.  13   Boundary Tractions - Unlined 
Cavity 
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where T T and r       are arbitrary constants.   Fig. 13 illustrates 
rr rr rö J ö 

the problem.   At the boundary (r = b) displacements and stresses are 

ü 

(1) 

r = b 

rr 2(1+a )b 
(1 + a ) + =— V 1; E. E rr   v6 

a ) + T       (— a ) 
r     rö  v3     v cos2Ö 

(69) 

u 

V) 
r = b 

(1 + a^b 

E, 
— 4 — 5 

-T        ( 2    ) + T        (-- 2P) 
rr   v3        a '       rö   l3 ' 

sin2ö (70) 

and 

rr. 
(1) 

r = b 

T +     T COS2Ö 
rr0 rrj 

ee(D 
r = b 

T        +   (T       - 2 T      )cos 20 
rr v rr rö ' 

r = b 

T        sin 2 Ö 
rei 

(71) 
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STATIC DISPLACEMENTS AND STRESSES IN AN ELASTIC CYLINDRICAL 
LINER UNDER ARBITRARY BOUNDARY TRACTIONS 

The generalized stress function and stresses for plane strain in cylindrical 

coordinates (Fig. 14) are 

0(2)(r, 9) = Cxr
2 4nr + C2r

2 + C^nr + C^ + (c^2 + Cßr
4 + -^ + Cgjcos 2 0 

(72) 

C        / 6C        4C    \ 
Trr      = C1(l+2*nr)+2C2+^- "Uc   +—j +—|-)cos2ö        (73) 

(2) r        * r r    ' 

C3      / 2     6C
7\ 766      = C1(3 + 2£nr)+2C2 -  —+(2C5 + 12C6r   + — I cos20 

(2) r        \ r    ' 

(74) 

/ 2      6C7      2C8   \ 
\o      =(2C5 + 6C6r 4  "  —      Sin2S <75) 

(2)     \ r p     ' 

where the subscript 2 identifies the elastic lining as opposed to the elastic 

infinite medium. 
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Fig.  14    Elastic Cylinder with 
Boundary Tractions 

The stress-displacement relationships are 

du 
1 + a 

J2L L 
rr(2) 8r E 

2     L 
(1 - (7 ) r -  a    7" 

2    rr(2)      2    ee(2) 

ee 
(2) 

u 3u 

_JSL +1 (21 = 
r r      96 

l + o-_ 

E (1-ff2)Tee    -a2Trr (2) rr(2)J 
(76) 

Integrating these equations for u        and u        and neglecting rigid body 
r(2) (2) 

motions, we obtain 
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1 + Or   1 
U i(l-2ffo) E2     I (2) 

C (2rfnr - r) + 2C r  2(J0Cr 
r 2   1 

-[-a-v A 2C 

+ 4a2C6r    • ~? + 2C5r cos 2 0 (77) 

1 + 
*2    \ ■•„--c *-wi' (12 - 8<y C6r   + 4C5 

4C7        4(1 - 2a2)C8 

sin 2 0 (78) 

In the u equations, note that to assure periodicity in 0, it is 
0, 
(2) 

necessary that 

Cl    =    0 (79) 

APPLICATION OF BOUNDARY AND COMPATABILITY EQUATIONS TO 
DETERMINE UNKNOWN COEFFICIENTS 

The system of equations developed above contains nine unknowns; i. e. , 

C  , C  , C  , C  , C  , C  ,  T      ,  T      , and T      .     Evaluation of these con- 
^ «5 O O • O ^^*rv ^*^"i ^*    1 

stants entails use of the boundary conditions at r = a and the stress and 

displacement compatability requirements at r = b. 
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Boundary Conditions at r = a 

C3      / 6C7      4C
8\ 

Trr      =2C2+^-(2C5+—+— )C0S2e = ° 
(2) a        \ a a   / 

r = a 

/ 2 6C7 2C
8\ 

\e      = I 2C5 + 6C6a   " — " — ) sin 26  =  0 (80) 
(2)       \ a a   / 

r = a 

Therefore 

r = b 

C3 
2C2 + -j   =0 (81) 

a 

6C 4C 
2C5 +   T   +  "T = ° <82> a a 

2       6C7      2C8 
2C5 + 6C6a   -— --T = ° <83> 

a a 

Stress Compatability Relations at r = b 

S       / 6C7       4C
8\ 

T =2C   + —r  -1   2C   + —7 + ——    cos 2 Ö = T       + T       cos 2 6 
rr(2) 2      b2      V      5        b4        b2/ rr0       "l 
r = b 

/ • 6C 2C   \ 
Tr«      =    2C5 + 6C6b   "   "7 ' -J    Sin 2e = V Sin 2* (84) 

(2)       \ b b    / 1 

42 



Therefore 

2C     +  — = T 
2       b2     rro 

(85) 

6C7 4C8\ 

.     5        b4 b2/      "l 
(86) 

2        6C7       2C8 
2C5 + 6C6b    --i--T=7r6 b b 

(87) 

Displacement Compatability Relations at r = b 

u = u = u' + u 
r             r             r r 

(2)           (1)           (1) (1) 

r = b       r = b       r = b r = b 

(2)       (i)       (i)       (i) 

r=b        r=b        r=b      r=b (88) 

Using Equations (65), (66), (69), (70), (77), and (78), there results 

1+cr 
(1 - 2a2)(2C2b) " — 

'$>»* 

T        b 
rr„ 

E,     * l' 
(89) 
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E„ 
3 2C7 4C8 

*W + 2C5b - "7 " t1 - V IT 
b 

2Tb 
— (1-20^(1+^) 

2(1 -a) 

+  =—*-  b 
rr   l6       r       röv3        l1 (90) 

1 + <J 

E 

C          2(1 - 2(7 )C 
(6-4a2)C6b   +2C6b + 2-  

b 

^b 
[(1   - 2(7^(1  + CT^] 

(1 + ^) — 4 — 5 
-T       (- - 2(J ) + T       (-   - 2a ) 

rr   K3 V       r0   K3 V 
(91) 

COMPUTATION AND NUMERICAL RESULTS 

Equations (81), (82), (83), (85), (86), (87), (89), (90) and (91) form a 

system of nine equations for the nine unknowns.    For compatibility with the 

nondimensional dynamic analysis presented previously, and to expedite 

computation, the following notation and assumptions are introduced: 

1 - (7 1 - (7 u 
1 2 2 2 M2       1 

El "l 
E. 

"2       "l      " 

a = 1,   T    = l ,  b 
b 
a =   V (92) 
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Equation (92) automatically correctly nondimensionalizes all the stress 

expressions.   The nine equations then become 

2C2   +   C3   =   0 

2C     +   6C     +   4C     =   0 
5 7 8 

2C5   +   6C6   -   -6C7   -   2C8   =   0 

6C_ 4CQ 

2C     +   — +  —- = -   T 
5            4 2                rr, 

7} T)                                1 

2C     +  -^   =    T 
2 2 rr 

•n o 

2 6C7 2C8 
2C    + 6C  r/    -   —— " —f- = r   n 5            6'              4             2 r0, 

r?           T) 1 

C3        l 
(l-2a)(2C)  -  —   =  -<-l-r      ) 

T) 0 

2 2C7 4C8 

—   J   O/l    _   Orr   \_0_T /lL  -    rr   \     -i-      T / —     -    /T   \ V < 2(1 - 2cr ) -2     - T        (| - a )   +   r   n   (|   - a )     f 
I    v 1' rr    v6       r r0   v3 1;J 1 

= - \ 2(1 - 2cr 

2C          2(1 - a )C 
(6-4a2)C6i,    +  2C5  + — —i 

r\ 7} 

=    — ) 9.H    - 9.CT   \   +   \   T I—    -    9.CT   \   -     T f-    "    2(7. * 
V 

< 2(1 -2a) + TT       (^  -  2(7J -   T       (|  "  2a,)]  '    (93) 
j   v 1' rr   v 3 r        rö   v3 I 
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Equation (91) is solved for Crt .. . Crt,  T      ,  T      , and r       , with v    7 2 8     rr       rr rö 

77 =   1.05, 1.1, 1.2 and two cases of material properties corresponding to 

the soft and stiff cylindrical lining of the dynamic analysis. 

Soft Cylindrical Lining 

v  =   2.9, a    =   .25, cr     =   .20 
1 ^j 

Stiff Cylindrical Lining 

i> =   .31,   cr    =   .25,   a    =   .30 

The values of constants Cn . .. Cn,  T      ,  T      , and T  _    for these 
2 8     rrrt     rr, rö, 

0 1 1 
two cases are tabulated in Table I. 

Table I 

Case I                v =  2.9    cr    =   .25    a    =   .20 
1                    z 

7? C2 C3 C5 C6 C7 C8 
r 
rro 

T 

""I H 
1.05 -.112 .224 .053 .002 .057 -.112 -.021 .019 .041 

1.1 -.116 .232 .053 .003 .060 -.116 -.040 .033 .077 

1.2 -.123 .246 .055 .004 .063 -.122 -.075 .047 .133 

Case II               v «  .31    a    =   .25    a2   =   . 30 

7? C2 C3 C5 C6 C7 C8 
T 
rro 

7 
rri 

T 
röl 

1.05 -.1004 2.008 .596 -.052 .491 -1.035 -.187 .138 .298 

1.1 -.903 1.806 .595 -.069 .458 - .984 -.313 .187 .442 

1.2 -.775 1.551 .572 -.071 .429 -  .930 -.474 .197 .578 
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Using the values of the constants tabulated in Table I, it is possible to 

evaluate the stresses and displacements at the boundaries of the stiff and soft 

cylinder.   For purposes of this report,  r*       ,  r*       , and T*        are 
DO au rr 

(2) (1) (1) 

r = a       r=b r=b 

calculated for each case.   The (*) notation is consistant with the nondimensional 

notation used in the dynamic analysis. 

T* 
66 

(2) 
r = a 

r = b 

2C0 - C    + (2C   + 12C   + 6CJ cos 2 0 
Z        3 5 b 7 

T' +T -l + (2-4(T 

r = b r = b 

) cos 26   - 
rr. 

+ (r       - 2T n ) cos 2 6 
rr rö 

(94) 

7* 
rr 

(1) 

r = b 

T +     T COS2Ö 
rr0 rrx 

These values for 6 =  ff, 7r/2   and 17=    1.05, 1.1, 1.2 are plotted 

gs. 3, 4, 5, 6, 8, 9, 10 i 

wave length or static solution. 

on Figs. 3, 4, 5, 6, 8, 9, 10 and 11 at a a = 0; this represents the infinite 
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